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The Green’s function solution to the convection-diffusion equation 2

Here we solve the convection-diffusion equation in a setting resembling the

experimental setup of [Rayment and Moruzzi, 1978]. In particular, we wish to find

the solution to the equations
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in an axisymmetric cylindrical coordinate system with conventional coordinates (ρ, φ, z).

In equations (S1) and (S2) the symbols n, ν, v, and D respectively denote density,

frequency, drift velocity, and the diffusion coefficient. Subsrcipts “e” and “i” respectively

correspond to electrons and ions while subscripts “a” and “d” respectively correspond

to attachment and detachment reactions. The longitudinal diffusion coefficient is

distinguished with the subscript “l” from the transverse diffusion coefficient denoted

with subscript “t”. Also, Se = n′e0δ(x)δ(y)δ(z) + νdni and Si = νane respectively

denote the source terms for electrons and ions, where in the first case both a stream of

electrons ejecting with a rate of n′e0 electrons per unit time from a point source located

at (ρ, z) = (0, 0) and electron detachment from O− ions contribute to electron density

in the drift region. The O− ions are created through electrons attaching to either O2 or

N2O [Rayment and Moruzzi, 1978].

Neglecting longitudinal diffusion and dropping the subscript “t” for the transverse

diffusion, we wish to solve the above equations in steady state scenarios. In that case

since equations (S1) and (S2) have the same format our goal is to solve
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where L is a linear operator and S(ρ, z) denotes the source term. To calculate n(ρ, z)

we use the Green’s function method and use the solution to the equation

Lg(ρ, z) = δ(x)δ(y)δ(z) (S4)

to obtain the solution to equation (S3). It may be seen by direct substitution that [e.g.,

Sejkora et al., 1984]
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1
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is indeed a solution to equation (S4) which (as expected) vanishes at infinity. In the

following, we demonstrate that g(ρ, z) is in fact a solution to equation (S4) by direct

substitution

gs(ρ, z) = f1(z)f2(ρ, z)f3(z) (S6)

where

f1(z) =
1

4πDz
(S7)
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f2(ρ, z) = exp
[
− v
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and

f3(z) = e−αz (S9)

where α = νv−1. We define λ = D−1v. Hence, ν
D

= ν
v

v
D

= αλ and equation (S3) reduces

to
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in which
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Hence, we have
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Having substituted the obtained results in equation (S4) we have
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Factoring out common terms in equation (S21) we have
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Consequently, neglecting the contribution of associative detachment to electron

production in comparison to the source of electrons we obtain
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for electron density in the drift region. Employing the same approach to calculate

ni(ρ, z) we have
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Subsequently, equation (S24) reduces to
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where we have set z = L, i.e., the collector location, defined `e,i = De,iv
−1
e,i and ψ′ as the

angle between ~ρ and ~ρ ′, which varies from 0 to π. Further defining η21(z) = [4`i(L−z)]−1

and η22(z) = (4`ez)−1 we arrive at
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Using |~ρ− ~ρ ′|2 = ρ2 + ρ′2 − 2ρρ′ cosψ′ and defining η2(z) = η21(z) + η22(z) we have
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Since [Abramowitz and Stugen, 1972, p. 360]

Jn(u) =
i−n

π

∫ π

ψ=0
eiu cosψ cos(nψ)dψ (S29)
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for n = 0 and u = −i2η21(z′)ρρ′ we obtain∫ π
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Note that J0(z) is invariant with respect to sign reversal. Subsequently,
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According to [Luke, 1962, p. 313] we have∫ ∞
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for Re(ν) > −1 and Re(η2) > 0. Having defined the substitutions t ← ρ′, ν ← 0, and
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Consequently, we have
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Before calculating the integral on z′ we define the ionic current as

Ii(L) = 2πqivi

∫ ρA
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ni(ρ, L)ρdρ (S36)

where qi is the ionic charge and ρA is the aperture radius. We calculate the integral on

ρ to obtain the ion current as opposed to ionic density. Note that this is also the case

of equation (7) in [Rayment and Moruzzi, 1978]. Hence,
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For an arbitrary coefficient C in the integral
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Note that in equation (S37), C = −η21η22η−2 and therefore

Ii(L) =
1

2
qin
′
e0
αa

∫ L

z′=0
dz′e−αd(L−z′)e−αaz′(1− e−η21η22η−2ρ2A) (S40)

Under the assumption that the aperture radius ρA → 0, one can expand the term
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Since,
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where we have used the fact that 0 ≤ z′, L − z′ ≤ L and βa � βd. Comparing with

equation (7) of [Rayment and Moruzzi, 1978], one can define a(z′) = 4`ez
′+ r20 where it

has been implicitly assumed that the current at the source has a radial distribution with

scale length r0 (see next section), and b(z) = a(z′) + 4`i(z− z′). Note that b(z′) = a(z′).

In that case
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We note that [Rayment and Moruzzi, 1978, Equation (7)] calculates the ion signal per

unit emission current, where the latter is given by Ie = qen
′
e0

or in the form of [Rayment

and Moruzzi, 1978, Equation (7)]
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where the “constant” introduced in [Rayment and Moruzzi, 1978, Equation (7)] is
1
2
αa

(
ρA
r0

)2
.

Electron distribution for Gaussian electron source

In this section we calculate the electron density in the drift region using the Green

function obtained in the previous section and the source electron distribution

fs(ρ, z) = A0 exp [−ρ
2
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]δ(z) (S46)

We comment on the dimensions of A0 once the calculation is done. The electron density

at (ρ, z) may be obtained via

ne(ρ, z) =
∫
V ′
ge(~ρ, ~ρ

′, z, z′)fs(~ρ
′, z′)dV ′ (S47)

In other words

ne(ρ, z) =
A0

4πDez
e−αaze−η

2
1ρ

2

∫ ∞
ρ′=0

dρ′ρ′e−η
2ρ′2

∫ π

φ′=0
dφ′e2η

2
1ρρ
′ cosφ′ (S48)

where η2 = η21 + η22 in which η21 = (4`ez)−1 and η22 = r−20 . From the previous section∫ π
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Therefore,
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Using equation (S33)∫ ∞
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Finally,
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One can see that for ne(ρ, z) to have units of density, A0 should be a flux.
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