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SUPPLEMENTARY INFORMATION
1. Further Details of EBM and Radiative Forcing Series
Links to Matlab © source code and forcing series are available at the Supplementary Online Archive:

http://www.meteo.psu.edu/~mann/supplements/Springboard_ClimChange10

Materials include:

· ebmforced.m : matlab code for implementing the EBM simulations (and calculating Hurst Coefficients)

Natural forcing series used:

· solarforcing.dat : data file containing estimated global mean solar forcing series from Ammann et al (2007) over AD 850-1999 (note that a multiplier of 0.65/0.25 is used to scale the solar forcing series from the lower to medium solar forcing scenario presented in Ammann et al)

· volcanic.dat : data file containing estimated global mean volcanic forcing series from Ammann et al (2007) over AD 850-1999 (note that the outlier AD 1258 eruption radiative forcing magnitude has been scaled down to have a peak amplitude of -4W/m^2  so that it doesn’t exert as much leverage on the long-term mean temperature series—the large estimated magnitude of the eruption based on ice core aerosol data has been called into question based on the lack of obvious response of the climate to the eruption—see Oppenheimer 2003)

Anthropogenic forcing series used:

· co2.dat: Estimated CO2 concentrations from Ammann et al (2007) over AD 850-1999. To obtain the required “CO2 equivalent” greenhouse radiative forcing, a scale factor of 1.75 is applied to the increase above the pre-industrial 280ppm value

· aerosol.dat: Estimated anthropogenic tropospheric aerosol forcing series from AD 1870-1999 from Crowley (2004)

2. Estimation of Hurst Parameters
There are 8 distinct methods for estimating the “Hurst coefficient” H in Matlab release 7.1.0 (R14SP3) that are available at the following link:

http://www.mathworks.com/matlabcentral/fileexchange/19148-hurst-parameter-estimate

Details behind the methods are available in Higuchi 1988, Taqqu et al, 1995, and Taqqu and Teverovsky 1998.

We performed tests of each of the 8 methods using ensembles of M=1000 simulations employing both N=100 and N=1000 length random processes.  We considered the following 3 test cases which reasonably span the range of LRD behavior that might be expected in the temperature time series of interest:

(1) pure Gaussian white noise  y(t)=e(t) for which the true H=0.5

(2) an AR(1) “red noise” process y(t)=rho*y(t-1)+e(t) for which the true is bounded by 0 and 1, but H=0.5 asymptotically, i.e. as long as the series is sub-sampled at the effective spacing of independent samples tau = (1+rho)/(1-rho) delta t [For our tests, we used the values rho=0.5 and rho=0.8]

(3) “random walk” or “Brownian motion”: y(t)=y(t-1)+e(t) for which the true H=1.5 

We found that only 4 of the methods [i) “Higuchi” method, ii) Aggregated Variance, iii) Absolute values of aggregated series and iv) the “Peng” residuals of regression method] performed stably over the range of test series produced (i.e. did not produce run time error messages for one or more test series) using our version of Matlab©  7.7.0.471 (MacOS) (Mac OS). Of these 4 methods, three of them (i-iii) returned correct results for test cases (1) and (2), but incorrect results for (3) [returned values very close to unity, but never exceeding it, despite the fact that the known theoretical value is H=1.5].  By contrast, method (iv) returned correct results for test case (3) but incorrect results for cases (1) and (2) [e.g. gave values of H that are systematically biased to exceed unity, particularly for AR(1) processes with large rho (e.g. 0.8) and modest size samples ( e.g. N=100)]. These results are consistent with the known weaknesses of these methods in estimating H under non-stationary (i-iii) and stationary (iv) conditions, respectively. 

Given the complementary performance of the alternative methods under stationary, i.e. H<1 (i-iii) and non-stationary, i.e. H>1 (iv), conditions, we used the following approach to estimating H:

1. Use composite of results from methods (i-iii) to obtain H unless either of the two conditions below obtain.

2. If composite of methods (i—iii) yields H very close to 1 (just how close is a considered to be a function of the length of the series—see © Matlab code for specific definition of tolerance function used) then use method (iv) to estimate H
3. If the geometric mean of (a) the composite of methods (i—iii) and (b) the results of method (iv) is sufficiently large compared to unity  [just how much larger is considered to be a function of the length of the series—see © Matlab code for specific definition of tolerance function used[, then again use method (iv) to estimate H. 

This hybrid approach to estimating H gave satisfactory performance (i.e. unimodal or nearly unimodal distributions centered on the correct theoretical values using ensembles of M=1000 realizations of series of both length N=100 and N=1000) for each of the three distinct test cases.
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Case 1 [Gaussian White Noise, length N=1000]

H=0.488+/- 0.055
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Case 1 [Gaussian White Noise, length N=100]

H=0.459+/- 0.144

[image: image2.png]120





Case 2 [AR(1) Red Noise rho=0.5, length N=1000]

H=0.551+/- 0.055
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Case 2 [AR(1) Red Noise rho=0.5, length N=1000, Subsampled]

H=0.527+/- 0.308
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Case 2 [AR(1) Red Noise rho=0.5, length N=100]

H=0.606+/- 0.135
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Case 2 [AR(1) Red Noise rho=0.8, length N=1000]

H=0.678+/- 0.048
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Case 2 [AR(1) Red Noise rho=0.8, length N=100]

H=0.849+/- 0.302
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Case 3 [AR(1) Red Noise rho=1, length N=1000]

H=1.485+/- 0.069
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Case 3 [AR(1) Red Noise rho=1, length N=100]

H=1.425+/- 0.535

See the following Matlab routines available in the Supplementary online archive:

· hurst_tests.m: © Matlab code to test performance of various methods of estimating Hurst coefficients
· Hest.m:  Calculate Hurst coefficient of a time series based on the combination of methods discussed above

These routines additionally require the following ©Matlab codes available at the Supplementary online archive:

· rednoise.m:  © Matlab code to generate a rednoise process of indicated length and lag-one autocorrelation coefficient rho 

· gasdev.m:  © Matlab code to generate Gaussian distributed random deviates (i.e. Gaussian white noise)

· Hest1.m:  © Matlab code to calculate Hurst coefficient for cases where H<1 using average of three methods discussed above

· Hest2.m:  © Matlab code to calculate Hurst coefficient for cases where N>1 using the “Peng” method discussed above

3. Observational Temperature Data used
Global mean surface temperature:

· Hadcrut3gl.dat:  HadCRUT3 global mean land+ocean surface temperature series AD 1850-2008 from Brohan et al 2006 (14th column is annual mean); the data are updated http://www.cru.uea.ac.uk/cru/data/temperature/
Proxy surface temperature reconstruction:

· Nhcru_cps_composite.mat:  Mann et al (2008) proxy-based Northern Hemisphere mean surface temperature reconstruction AD 0-1996 decadally-smoothed (Matlab binary data file; reconstruction contained in variable ‘compos’)
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